


### Communication

# The Michael Addition–Elimination of Ylides to □,β-Unsaturated Imines. Highly Stereoselective Synthesis of Vinylcyclopropanecarbaldehydes and Vinylcyclopropylaziridines

Jun-Cheng Zheng, Wei-Wei Liao, Yong Tang, Xiu-Li Sun, and Li-Xin Dai

*J. Am. Chem. Soc.*, **2005**, 127 (35), 12222-12223• DOI: 10.1021/ja052228y • Publication Date (Web): 16 August 2005 Downloaded from http://pubs.acs.org on March 25, 2009



## More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 10 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML





Published on Web 08/16/2005

# The Michael Addition–Elimination of Ylides to α,β-Unsaturated Imines. Highly Stereoselective Synthesis of Vinylcyclopropanecarbaldehydes and Vinylcyclopropylaziridines

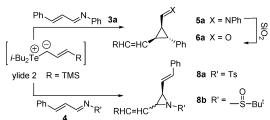
Jun-Cheng Zheng, Wei-Wei Liao, Yong Tang,\* Xiu-Li Sun, and Li-Xin Dai

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received April 7, 2005; E-mail: tangy@pub.sioc.ac.cn

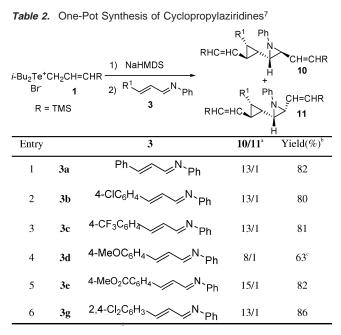
Much attention has been paid to the construction of multisubstituted cyclopropanes, the basic structural elements in a wide range of biologically active compounds as well as important intermediates in organic synthesis.1 The tandem Michael addition-elimination of ylides to electron-deficient alkenes provides easy access to functionalized cyclopropanes.<sup>2</sup> However, few examples were reported on the preparation of cyclopropanecarbaldehydes<sup>3</sup> via ylide cyclopropanation of  $\alpha$ . $\beta$ -unsaturated aldehydes, except those related to stabilized ylides,<sup>2c,4</sup> due to the difficulty associated with the control of the chemoselectivity (C=C versus C=O). Our group described a method for the one-step enantioselective synthesis of 1,3-disubstituted-2-vinylcyclopropanes<sup>3,5</sup> with high diastereoselectivity from  $\alpha,\beta$ -unsaturated esters, amides, ketones, and nitriles via a sulfur or tellurium ylide.<sup>6</sup> However, switching the substrate to  $\alpha,\beta$ -unsaturated aldehyde gave epoxide in lieu of the desired cyclopropanecarbaldehyde.<sup>7</sup> We recently sought a solution to this problem and developed the first example of ylide cylopropanation of  $\alpha,\beta$ -unsaturated imines, leading to a highly stereoselective synthesis of vinylcyclopropanecarbaldehydes and vinylcyclopropylaziridines. In this communication, we wish to report the preliminary results.

The reactions of ylides with  $\alpha,\beta$ -unsaturated imines were wellstudied and documented to afford aziridines as the products via a 1,2-addition.<sup>8</sup> To the best of our knowledge, no example of ylide cyclopropanation of  $\alpha,\beta$ -unsaturated imines via a 1,4-addition has been described in the literature. Fortunately, we found that telluronium salt **1**, after deprotonation by NaHMDS, could react with imine **3a** in a 1,4-addition manner to afford cyclopropanecarbaldehyde<sup>9</sup> **6a** and **7a** with excellent chemoselectivity and diastereoselectivity (**6a**/**7a** > 99/1) in 85% yield (entry 1, Table 1). Further studies showed that the *N*-substituents strongly affected the chemoselectivity. When *N*-sulfonyl or *N*-sulfinyl imine was selected as a substrate instead of the *N*-phenyl imine, only aziridine was obtained. Therefore, the chemoselectivity of the reaction of the ylide with  $\alpha,\beta$ -unsaturated imine could be controlled by a reasonable choice of the *N*-substituents (Scheme 1).


Having established the feasibility of and optimal conditions for the cyclopropanation, we surveyed the scope of the  $\alpha$ , $\beta$ -unsaturated imines. As shown in Table 1,  $\beta$ -aryl and  $\beta$ -heteroaryl  $\alpha$ , $\beta$ unsaturated imines were good substrates to afford the desired products with high diastereoselectivities (up to >99/1) in good yields (entries 1–7, Table 1), providing easy access to vinylcyclopropanecarbaldehydes that could not be prepared by a direct reaction of  $\alpha$ , $\beta$ -unsaturated aldehydes with allylic ylides due to the problem of the chemoselectivity. Substitution on the aryl ring with both electron-withdrawing and electron-donating groups proved to be well-tolerated, notably, with an ester group attached to the aromatic substituent.  $\ensuremath{\textit{Table 1.}}$  Selective Cyclopropanation between Unsaturated Imines and Telluronium  $\ensuremath{\textit{Ylide}^7}$ 

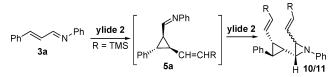
CHO

| i-Bu; | 2 <sup>Te⁺CH</sup> 2(<br><sup>Br⁻</sup> 1<br>or<br>Te⁺CHCŀ<br>⁻BPh₄ | 1) NaHMDS<br>2) R <sup>1</sup>                          | R <sup>1</sup> <sup>1</sup><br>,N <sub>Ph</sub> 3<br>R <sup>1</sup> | CHO R                  | = TMS               |
|-------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|------------------------|---------------------|
| entry | salt                                                                | <b>3</b> (R <sup>1</sup> )                              | <b>6/7</b> ª                                                        | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
| 1     | 1                                                                   | $3a(C_6H_5)$                                            | >99/1                                                               | 85                     | _                   |
| 2     | 1                                                                   | <b>3b</b> (4-ClC <sub>6</sub> H <sub>4</sub> )          | >99/1                                                               | 75                     | _                   |
| 3     | 1                                                                   | 3c (4-CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub> )   | >99/1                                                               | 85                     | -                   |
| 4     | 1                                                                   | <b>3d</b> (4-MeOC <sub>6</sub> H <sub>4</sub> )         | >99/1                                                               | 68                     | -                   |
| 5     | 1                                                                   | 3e (4-MeO <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> ) | >99/1                                                               | 80                     | -                   |
| 6     | 1                                                                   | 3f (2-furanyl)                                          | >99/1                                                               | 68                     | -                   |
| 7     | 1                                                                   | 3g (2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub> ) | >32/1                                                               | 88                     | -                   |
| 8     | 9                                                                   | $3a(C_6H_5)$                                            | >60/1                                                               | 85                     | 99                  |
| 9     | 9                                                                   | 3b (4-ClC <sub>6</sub> H <sub>4</sub> )                 | >60/1                                                               | 73                     | 95                  |
| 10    | 9                                                                   | 3c (4-CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub> )   | >36/1                                                               | 83                     | 95                  |
| 11    | 9                                                                   | 3d (4-MeOC <sub>6</sub> H <sub>4</sub> )                | >99/1                                                               | 68                     | 95                  |
| 12    | 9                                                                   | <b>3f</b> (2-furanyl)                                   | >99/1                                                               | 61                     | 95                  |

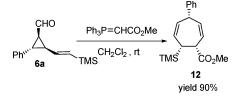

<sup>*a*</sup> Determined by 300 M <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by chiral HPLC for compound **6** when salt **9** was used.

Scheme 1




In a previous study,<sup>6a</sup> it was demonstrated that chiral telluronium salt **9** was good for the highly enantioselective synthesis of vinylcyclopropane derivatives. For both  $\beta$ -aryl and  $\beta$ -heteroaryl unsaturated imines, the reaction with chiral salt **9** instead of salt **1** gave the desired cyclopropanes with both excellent diastereoselectivity and enantioselectivity in good yields (entries 8–12, Table 1), providing a new method for the preparation of optically active vinylcyclopropanecarbalehydes in one-pot.

It was a great surprise to us that vinylcyclopropylaziridines **10a** and **11a** were isolated in 82% overall yield when increasing the equivalent ratio between telluronium salt **1** and imine **3a** to 3 to 1, because aliphatic *N*-phenylaldimines were found to be inert to ylide **2** in our previous study.<sup>10</sup> This experimental result also demonstrated the formation of intermediate **5a**, suggesting that the cyclopropyl-




<sup>*a*</sup> Determined by 300 M <sup>1</sup>H NMR. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Products are not very stable on silica gel, and 4 equiv of salt 1 was used. When **3f** was selected as a substrate, the products were completely decomposed on column.

### Scheme 2



Scheme 3. Tandem Reaction from Vinylcyclopropanecarbaldehyde 6a to Cycloheptadiene 12<sup>7</sup>



aziridines were produced via a Michael addition—elimination, followed with an aziridination reaction by a second ylide attack (Scheme 2).

By employing 3–4 equiv of salt **1** relative to imine **3**, we found that the desired product with cumulated three-membered rings could be synthesized with good diastereoselectivity (up to 15/1) in reasonable yields (Table 2). Again,  $\beta$ -aryl and  $\beta$ -heteroaryl  $\alpha$ , $\beta$ -unsaturated imines worked well in the sequential cyclopropanation–aziridination. Entry 5 is noteworthy, indicating that the ester group is compatible with the reaction.

In summary, we have developed a new protocol for the preparation of vinylcyclopropanecarbaldehydes as well as cyclopropylaziridines via allylic ylides using readily available  $\alpha$ , $\beta$ -

unsaturated imines as starting materials. The high diastereoselectivity, excellent enantioselectivity, and in particular the unique chemoselectivity make this reaction potentially useful. For example, the aldehyde **6a** was easily transformed into a seven-membered ring compound **12** through a Wittig reaction, followed by a [3,3]  $\sigma$ -rearrangement (Scheme 3).

**Acknowledgment.** We are grateful for the financial support from the Natural Sciences Foundation of China and The Science and Technology Commission of Shanghai Municipality.

**Supporting Information Available:** Synthesis and characterization of key compounds, chiral HPLC data of **6** (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

#### References

- For reviews on the synthesis and application of cyclopropanes, please see: (a) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, 103, 977. (b) Pietruszka, J. *Chem. Rev.* 2003, 103, 1051. (c) Reissig, H. U.; Zimmer, R. *Chem. Rev.* 2003, 103, 1151. (d) Wessjohann, L. A.; Brandt, W. *Chem. Rev.* 2003, 103, 1625. (e) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J. *Tetrahedron* 2003, 59, 5623. (f) Li, A. H.; Dai, L. X.; Aggarwal, V. K. *Chem. Rev.* 1997, 97, 2341.
- (2) For leading references, please see: (a) Bremeyer, N.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 2681. (b) Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 4641. (c) Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003, 42, 828. (d) Kimber, M. C.; Taylor, D. K. J. Org. Chem. 2002, 67, 3142. (e) Avery, T. D.; Fallon, G.; Greatrex, B. W.; Pyke, S. M.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2001, 66, 7955. (f) Aggarwal, V. K.; Alonso, E.; Fang, G. Y.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433. (g) Aggarwal, V. K.; Smith, H. W.; Hynd, G.; Jones, R. V. H.; Fieldhouse, R.; Spey, S. E. J. Chem. Soc., Perkin Trans. 1 2000, 3267. (h) Solladie-Cavallo, A.; Diep-Vohuule, A.; Isarno, T. Angew. Chem., Int. Ed. 1998, 37, 1689.
- (3) For the synthesis of cyclopropanecarbaldehydes from vinylcyclopropanes prepared via an ylide route, please see: Hanessian, S.; Andreotti, D.; Gomtsyan, A. J. Am. Chem. Soc. 1995, 117, 10393.
- (4) For cyclopropanation of α,β-unsaturated aldehydes with stabilized ylides, please see: (a) Kunz, R. K.; Macmillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3240. (b) Oswald, M. F.; Raw, S. A.; Taylor, R. J. K. Org. Lett. 2004, 6, 3997. (c) Curley, R. W., Jr.; Deluca, H. F. J. Org. Chem. 1984, 49, 1944. (d) Payne, G. B. J. Org. Chem. 1967, 32, 3351.
- (5) (a) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J.; Yuan, H. J. Am. Chem. Soc. 2001, 123, 2964. (b) Nagasawa, T.; Handa, Y.; Onoguchi, Y.; Ohba, S.; Suzuki, K. Synlett 1995, 739.
- (6) (a) Liao, W. W.; Li, K.; Tang, Y. J. Am. Chem. Soc. 2003, 125, 13030.
  (b) Ye, S.; Huang, Z. Z.; Xia, C. A.; Tang, Y.; Dai, L. X. J. Am. Chem. Soc. 2002, 124, 2432. (c) Ye, S.; Yuan, L.; Huang, Z. Z.; Tang, Y.; Dai, L. X. J. Org. Chem. 2002, 65, 6257.
- (7) For the detailed procedure, please see Supporting Information.
- (8) (a) Morton, D.; Pearson, D.; Field, R. A.; Stockman, R. A. Org. Lett. 2004, 6, 2377. (b) Morton, D.; Pearson, D.; Field, R. A.; Stockman, R. A. Synlett 2003, 13, 1985. (c) Aggarwal, V. K.; Ferrara, M.; O'Brien, C. J.; Thompson, A.; Jones, R. V. H.; Fieldhouse, R. J. Chem. Soc., Perkin Trans. 1, 2001, 1635. (d) Saito, T.; Sakairi, M.; Akiba, D. Tetrahedron Lett. 2001, 42, 5451. (e) Deng, W. P.; Li, A. H.; Dai, L. X.; Hou, X. L.; Tetrahedron 2000, 56, 2967. (f) Li, A. H.; Dai, L. X.; Hou, X. L.; Xia, L. J.; Lin, L. J. Org. Chem. 1998, 63, 4338. (g) Li, A. H.; Dai, L. X.; Hou, X. L.; A. H.; Dai, L. X.; Hou, X. L.; Chen, Soc., Perkin Trans. 1 1996, 867. (h) Li, A. H.; Dai, L. X.; Hou, X. L.; Chen, M. B. J. Org. Chem. 1996, 61, 4641.
- (9) For the synthesis of optically active cyclopropanecarbaldehydes and cyclopropyl ketones, please see: (a) Risatti, C. A.; Taylor, R. E. Angew. Chem., Int. Ed. 2004, 43, 6671. (b) Kalkofen, R.; Brandau, S.; Wibbeling, B.; Hoppe, D. Angew. Chem., Int. Ed. 2004, 43, 6667. (c) Taylor, R. E.; Risatti, C. A.; Engelhardt, R. F. C.; Schmitt, M. J. Org. Lett. 2003, 5, 1377.
- (10) Liao, W. W.; Deng, X. M.; Tang, Y. Chem. Commun. 2004, 1516.

JA052228Y